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In a series of recent papers �1–4� a lattice method to solve
the Fokker-Planck �FP� kinetic equation has been introduced.
The equation models a two-component system, e.g., solute
and solvent, when a separation of time scales is expected.
One can then adopt an effective one-component description
and consider only the solute distribution function while the
FP collision operator takes into account the effect of the
solvent. The resulting kinetic equation can be solved numeri-
cally within the framework of the Lattice-Boltzmann �LB�
method �5–8�. The method is usually applied to kinetic equa-
tions of the Bhatnagar-Gross-Krook �BGK� type to repro-
duce hydrodynamic behavior, but can also be used to con-
struct lattice algorithms to solve more general types of
equations �5�.

The derivation of the lattice FP �LFP� algorithm, de-
scribed in detail in �1�, follows a systematic procedure
�9–12� involving two separate steps: discretization in real
and velocity space on the one hand, discretization in time on
the other hand. In the first step the positions x are considered
points on a lattice, and the velocities can only assume a finite
set of values vi , i=1, . . . ,b corresponding to lattice links. The
resulting continuous-time equation for the lattice distribution
functions gi is

�tgi�x;t� + vi���gi�x;t� = L̂i�g�x;t�� , �1�

where vi� are Cartesian components in generic dimension D,
Greek indices run from 1 to D, �t=� /�t and ��=� /�x� are,
respectively, time and space derivatives, and summation con-
vention is assumed. On the right-hand side appears the ith

component L̂i of the lattice collision operator L̂ acting on the
populations gi�x ; t� denoted by the collective symbol g. The
lattice operator is derived from the continuous FP operator
using a Gauss-Hermite quadrature and involves the moments
of the gi in velocity space, namely the density �=�igi, the
current J�=�igivi�, and the stress tensor P��=�igivi�vi�.
The second step is achieved by integrating �1� between t
and t+�t. Let g�s� denote the time-shifted populations
gi�x+vis ; t+s�. Then

g� − g = �
0

�t

L̂�g�s��ds , �2�

where g�=g��t� are the populations gi�x+vi�t ; t+�t�. Ap-
proximation of the integral by the rectangle rule results in a

numerical scheme which is only first-order accurate in �t.
In �1� the Chapman-Enskog analysis of the algorithm al-
lowed us to evaluate the O��t2� corrections analytically, so
that it was possible to derive a heuristic second-order
scheme, referred to as “corrected scheme.” In this paper,
we show that it is possible to achieve second-order accuracy
of the LFP scheme by extending an idea commonly used in
LB methods, the approximation of the integral in �2� by the
trapezoidal rule �13–16�.

The trapezoidal rule is an average of the starting and final
points of the integration interval

�
0

�t

L̂�g�s��ds =
�t

2
�L̂�g�� + L̂�g�� + O��t3� �3�

It is similar in spirit to the Crank-Nicholson method for or-
dinary differential equations and has second-order accuracy
�17�. The presence of the collision operator at time t+�t
makes the combination of �2� and �3� unusable as such.
However, following �13–16� we introduce the mapping

g̃ = g −
�t

2
L̂�g� �4�

and rewrite �3� as

g̃� − g̃ = �tL̂�g� + O��t3� , �5�

where the right-hand side now depends on the populations gi
at time t only. Equation �5� can be turned into an operational
form by expressing the collision operator in terms of the
shifted populations �4�.

It is instructive to recall the final form of the scheme in
the case of the BGK collision operator

L̂BGK�g� = − �−1�g − geq� � − �−1LBGK�g� , �6�

where �−1 is the collision frequency, geq is the discretized
Maxwell-Boltzmann equilibrium population, depending only
on the moments � ,J, and we have introduced the operator
LBGK�g�=g−geq. Using the definition �4�, Eq. �5� is rewritten
as

g̃� − g̃ = −
�−1�t

1 + �−1�t/2
LBGK�g̃� �7�

and, in particular, we can compute g̃eq because the zeroth and
first moments of g and g̃ coincide. This is not true for the
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second moment tensor P, and indeed the trapezoidally evolv-
ing distributions g must be used for the sampling. In practice
one does not invert �4� �which is not trivial� but just uses the
associated moment relations.

In the LFP case �−1 is replaced by the friction � and LBGK

by �1�

Li�g�/wi = �J� − J�
eq�

Hi,�
�1�

vT
2 + 2�P�� − P��

eq �
Hi,��

�2�

2vT
4 , �8�

where the Hermite polynomials �18� are Hi,�
�1�=vi�, Hi,��

�2�

=vi�vi�−vT
2���, wi are appropriate weights, vT is the thermal

velocity,

J�
eq � u�

E� �9�

P��
eq � vT

2���� + �u�
EJ� + u�

EJ��/2 �10�

and the external velocity u�
E is defined such that the constant

external field m�u�
E acts on the solute particles of mass m.

The collision operator involves now up to the second mo-
ment, and computing the moments on both sides of �4� we
get

�̃ = � , �11a�

J̃� = �1 +
��t

2
�J� −

��t

2
J�

eq, �11b�

P̃�� = �1 + ��t�P�� − ��tP��
eq , �11c�

showing that only the zeroth moments of g and g̃ coincide.
The operational form of the trapezoidal LFP algorithm is
specified by

g̃� − g̃ = − ��tL̃�g̃� , �12�

where the operator L̃�g̃� must satisfy L̃�g̃�	L�g�. In the

BGK case L̃�g̃� is just L�g̃� / �1+�−1�t /2�, see Eq. �7�. In the
LFP case instead we have to invert Eqs. �11�. The collision

operator L̃ can be computed explicitly, but in a computer
implementation one can follow a recursive procedure. The
zeroth moments coincide, and the first becomes

J� =
J̃� + ���t/2�J�

eq

1 + ��t/2
, �13a�

where J�
eq can be computed because it contains only �= �̃.

The second moment is then

P�� =
P̃�� + ��tP��

eq

1 + ��t
�13b�

and again P��
eq contains only � and J� which are now avail-

able. Substituting relations �13a� and �13b� into �8� we get
the desired operator

L̃i�g̃�/wi =
J̃� − J�

eq

1 + ��t/2

Hi,�
�1�

vT
2 + 2

P̃�� − P��
eq

1 + ��t

Hi,��
�2�

2vT
4 . �14�

Equations �11� are specific to the FP case, but the recursive
procedure only exploits the fact that the collision matrix is
lower triangular �1� and has hence wider applicability.

The trapezoidal algorithm can be summarized as follows.
Choose the friction �, which at variance with the scheme of
Ref. �1� does not need any rescaling. The evolution is per-
formed on g̃, while initial conditions and sampling use the
trapezoidally corrected bare moments � ,J ,P, which are the
true hydrodynamic variables. Then given g̃ at time t: �1�
Compute the tilde moments �̃ , J̃� , P̃�� and hence the bare
equilibrium moments J�

eq , P��
eq using the recursive procedure;

�2� Compute the post-collision populations L̃�g̃� using �14�;
�3� Stream g̃ to g̃� at time t+�t. The hydrodynamic variables
are sampled by means of Eqs. �13a� and �13b�. The compu-
tational effort is comparable to that of previously proposed
schemes because the new collision operator just requires the
inversion equations �13a� and �13b� which only involve a
few more floating point operations. In particular, the linear
scaling with lattice size is preserved.

It can be shown that the heuristic scheme introduced
in �1� can be recovered by �a� using the tilde variables
in place of the bare ones �also in the definition of the equi-
librium moments �9� and �10�� and an effective friction
�̃=� / �1+��t /2�, �b� neglecting a O��t2� term in the lattice
collision operator �14�, and �c� expanding to order �t Eqs.
�13a� and �13b� for the sampled moments �which were de-
noted with stars in �1��. This explains why the heuristic
scheme has a larger error of order �t2 than the trapezoidal
algorithm �see below�, and also shows that the evolution of
the density and the current are identical in both schemes.

The present algorithm propagates the populations from t
to t+�t with second-order accuracy. However, the error after
many time steps could be worse. We now show that this
order of accuracy is preserved for the long-time behavior by
performing a Chapman-Enskog analysis. The populations gi
and the time and space derivatives are expanded in powers of
a small parameter 	 analogous to the Knudsen number used
in the LB case:

gi = gi
�0� + 	gi

�1� + 	2gi
�2� �15a�

�t = 	�t
�1� + 	2�t

�2�, �� = 	��
�1�. �15b�

In the FP case however, the relevant expansion parameter is
rather defined as 	= �vT /R� /�, where R is the solute radius.
The small 	 expansion is thus a high friction limit, where a
large number of solute-solvent collisions occur while the sol-
ute moves over its own radius �19�. All hydrodynamic mo-
ments, which are linear combinations of the gi’s, are ex-
panded as in Eq. �15a�. We can approximate the populations
g̃i�	 g̃i�x+vi�t ; t+�t� by a Taylor expansion around g̃i

	 g̃i�x ; t�, and write up to second order g̃i�− g̃i=�tĈS�g̃i�,
where
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ĈS�g̃i� = ��t + vi��� + �t��t + vi����2/2�g̃i. �16�

Using Eqs. �15� the operator ĈS is expanded as

ĈS�g̃i� = 	
�t
�1�g̃i

�0� + ��
�1�vi�g̃i

�0�� + 	2
�t
�1�g̃i

�1� + ��
�1�vi�g̃i

�1�

+ �t
�2�g̃i

�0� + ��t
�1���t

�1�g̃i
�0� + ��

�1�vi�g̃i
�0��

+ ��
�1���t

�1�vi�g̃i
�0� + ��

�1�vi�vi�g̃i
�0����t/2� . �17�

As for the lattice collision operator �8�, the expansion
acts order by order on the moments and we can write
Li�g�=Li

�0�+	Li
�1�+	2Li

�2� where

Li
�
�/wi = �J�

�
� − J�
eq,�
��

Hi,�
�1�

vT
2 + 2�P��

�
� − P��
eq,�
��

Hi,��
�2�

2vT
4

�18�

for 
=0,1 ,2. After equating terms of the same order in 	 in
Eqs. �17� and �18�, the moment equations can be computed
at each order. For the zeroth moment equation one can just
sum both sides of the equations over i, for the next moments
one must first multiply by vi�, vi�vi�, and so on. For each
order in 	, we can compute different moment equations. The
computations are carried out using the orthonormality rela-
tions of Hermite polynomials, see, e.g., �1,18�. To order 0,
the zeroth moment does not give any information, while the
first and second moment read

0 = − ��J�
�0� − J�

eq,�0�� , �19a�

0 = − 2��P��
�0� − P��

eq,�0�� . �19b�

At this stage it is important to note that using �19� and �11�
one also finds

�̃�
� = ��
� " 
, J̃�
�0� = J�

�0�, P̃��
�0� = P��

�0�. �20�

To order 	 we find for the zeroth, first, and second moments

�t
�1��̃�0� + ��

�1�J̃�
�0� = 0, �21a�

�t
�1�J̃�

�0� + ��
�1�P̃��

�0� = − ��J�
�1� − J�

eq,�1�� , �21b�

�t
�1�P̃��

�0� + ��
�1�Q̃���

�0� = − 2��P��
�1� − P��

eq,�1�� . �21c�

For the order 	2 we use the results of Eq. �21�, and we only
consider the zeroth and first moment equations. Using Eqs.
�21� and �11� we get after some algebra

�t
�2���0� + �t

�1���1� + ��
�1�J�

�1� = 0, �22a�

�t
�2�J�

�0� + �t
�1�J�

�1� + ��
�1�P��

�1� = − ��J�
�2� − J�

eq,�2�� . �22b�

We now reconstruct the total time and space derivative by
forming the combinations 	1�21a�+	2�22a� for the zeroth
moment, and 	0�19a�+	1�21b�+	2�22b� for the first, where
in �21a� and �21b� the moments can be replaced by their bare
counterparts, according to �20�. Recognizing that ��X=	��

�1�

��X�0�+	X�1��=	��
�1�X�0�+	2��

�1�X�1�, where X is any of the
moments, and that �tX=	�t

�1�X�0�+	2�t
�2�X�0�+	2�t

�1�X�1�, the
combinations can be written as

�t� + ��J� = 0, �23a�

�tJ� + ��P�� = − ��J� − J�
eq� , �23b�

which coincide with the moment equations obtained from the
continuous FP equation �1�.

Stability analysis of LB schemes requires −2��0,
where  is any eigenvalue of the associated collision matrix
�6�. In the present trapezoidal LFP case the eigenvalues

FIG. 1. Relative error on the stress P as a function of time for a
constant, uniform applied field on an infinite homogeneous system
at a friction ��t=0.9. The trapezoidal scheme �solid line� and the
corrected scheme of Ref. �1� �dashed lined�, are compared to the
analytical solution Eq. �24�. The trapezoidal algorithm shows better
agreement with theory.

FIG. 2. Relative error for the diffusion coefficient. In the trap-
ezoidal scheme the error is almost equal to −�a�t / �2vT��2 �solid
line�, independently of the friction �, while the error is larger in the
corrected scheme �symbols� and does depend on the friction. Accel-
eration a is in units �x /�t2.
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can be computed along the lines of �1� and are 0,−��t / �1
+��t /2�, and −2��t / �1+��t�. The stability inequalities are
always satisfied and the scheme is unconditionally stable.
This is an interesting effect that we also verified numerically.
We note that this does not also mean that the scheme uncon-
ditionally reproduces Eqs. �23�. The numerical criterions
of small Mach number �weak external fields� and friction
���t�1� found in �1� continue to apply for a faithful
reproduction of the macroscopic equations.

We now reconsider two numerical tests introduced in �1�.
In the first example, a constant external field m�uE is applied
in a one-dimensional system with periodic boundary
conditions, initially homogeneous at density �0 and vanish-
ing velocity. The current obeys J�t�=�uE�1−exp�−�t��
and the evolution equation for the second moment
�tP=−2��P−�vT

2 −uEJ� has the analytical solution

P�t� = ���uE�2 + vT
2� − 2��uE�2e−�t

+ 
P�0� − 2��− �uE�2 + vT
2��e−2�t �24�

The system is initialized with a Maxwell-Boltzmann distri-
bution at fixed macroscopic �=�0 ,J /�	u=0. The simulated

moments �̃ , ũ= J̃ / �̃ are set to fulfill these conditions, and in
this case both the corrected and the trapezoidal scheme re-

duce to setting �̃=�0 and ũ=−uE��t /2. The quantity P̃�0� is
completely determined and equal to ��vT

2 + ũ2� which in turn
gives P�0�=�vT

2 +�ũ2 / �1+��t� for the trapezoidal scheme
and P�0�=�vT

2 −�ũ2 for the corrected scheme �in the continu-
ous case P�0�=�vT

2�. Simulation results show that the current
J is exactly the same in both schemes and fails to correctly
reproduce the continuous results for ��t�1, but the stress
tensor P is closer to the analytical result in the trapezoidal
scheme �see Fig. 1�.

In the second example we consider the same system with
bounce-back no-slip reflecting boundary conditions �5�. Let
a=�uE denote the constant applied acceleration. Accumula-

tion due to migration results in a concentration gradient
which is the source of a diffusive flux opposed to the applied
field. From the balance of fluxes, we find at equilibrium the
barometric law for the density �eq�x��exp�ax /vT

2�
	exp�uEx /D0�, where we defined the diffusion coefficient
D0=vT

2 /� according to Einstein’s relation. From an exponen-
tial fit of the data we derive a simulated diffusion coefficient
Dsim upon dividing uE by the measured slope. The relative
error reported in Fig. 2 shows that the values of Dsim are
closer to D0 than in the case of the corrected scheme. In the
former case the error is almost equal to −�a�t / �2vT��2, inde-
pendently of the friction �, and smaller than in the latter
case, where in addition the error depends on the friction.

We have presented a new lattice Fokker-Planck algorithm,
based on the trapezoidal rule for time integration. Generaliz-
ing a well-established procedure of LB methods we have
derived a computational scheme for the integration of the
LFP equation with second-order accuracy. The Chapman-
Enskog analysis and numerical tests of this scheme confirm
the increased accuracy with respect to the integration
schemes of Refs. �1–3�, where LFP was introduced. We thus
recommend the use of the trapezoidal algorithm in the imple-
mentations of the LFP method. Further improvements are
expected by using refined no-slip boundary conditions �20�.
A LB scheme in the presence of nonconserved fields has
recently been derived in �21�. Work is in progress on the
generalization of the present method to cases where the
external field is self-consistent or time dependent.

ACKNOWLEDGMENTS

Fruitful discussions with J.-P. Hansen, S. Melchionna,
and S. Succi are gratefully acknowledged. B.R. acknowl-
edges financial support from the Agence Nationale pour
la Gestion des Déchets Radioactifs �ANDRA, France�.
D.M. acknowledges financial support from Schlumberger
Cambridge Research.

�1� D. Moroni, B. Rotenberg, J.-P. Hansen, S. Succi, and S. Mel-
chionna, Phys. Rev. E 73, 066707 �2006�.

�2� S. Melchionna, S. Succi, and J.-P. Hansen, Int. J. Mod. Phys. C
17, 459 �2006�.

�3� S. Melchionna, S. Succi, and J.-P. Hansen, Phys. Rev. E 73,
017701 �2006�.

�4� B. Rotenberg et al., J. Chem. Phys. 124, 154701 �2006�.
�5� S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics

and Beyond �Oxford University Press, Oxford, 2001�.
�6� R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145

�1992�.
�7� S. Chen and G. Doolen, Annu. Rev. Fluid Mech. 30, 329

�1998�.
�8� S. Succi, I. V. Karlin, and H. Chen, Rev. Mod. Phys. 74, 1203

�2002�.
�9� X. He and L.-S. Luo, Phys. Rev. E 55, R6333 �1997�.

�10� X. He and L.-S. Luo, Phys. Rev. E 56, 6811 �1997�.
�11� X. Shan and X. He, Phys. Rev. Lett. 80, 65 �1998�.

�12� N. S. Martys, X. Shan, and H. Chen, Phys. Rev. E 58, 6855
�1998�.

�13� X. He, X. Shan, and G. D. Doolen, Phys. Rev. E 57, R13
�1998�.

�14� X. He, S. Chen, and G. D. Doolen, J. Comput. Phys. 146, 282
�1998�.

�15� P. J. Dellar, Phys. Rev. E 64, 031203 �2001�.
�16� P. J. Dellar, J. Comput. Phys. 190, 351 �2003�.
�17� M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables,
9th printing �Dover, New York, 1972�.

�18� H. Grad, Commun. Pure Appl. Math. 2, 325 �1949�.
�19� L. Bocquet, Am. J. Phys. 65, 140 �1997�.
�20� M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. Van den

Akker, Phys. Rev. E 67, 066703 �2003�.
�21� S. Arcidiacono et al., Math. Comput. Simul. 72 �2–6�, 79

�2006�.

BRIEF REPORTS PHYSICAL REVIEW E 74, 037701 �2006�

037701-4


